TimeFlagsTransform¶
- class TimeFlagsTransform(minute_in_hour_number: bool = True, fifteen_minutes_in_hour_number: bool = False, hour_number: bool = True, half_hour_number: bool = False, half_day_number: bool = False, one_third_day_number: bool = False, out_column: Optional[str] = None)[source]¶
Bases:
etna.transforms.base.IrreversibleTransform
,etna.transforms.base.FutureMixin
TimeFlagsTransform is a class that implements extraction of the main time-based features from datetime column.
Initialise class attributes.
- Parameters
minute_in_hour_number (bool) – if True: add column with minute number to feature dataframe in transform
fifteen_minutes_in_hour_number (bool) – if True: add column with number of fifteen-minute interval within hour with numeration from 0 to feature dataframe in transform
hour_number (bool) – if True: add column with hour number to feature dataframe in transform
half_hour_number (bool) – if True: add column with 0 for the first half of the hour and 1 for the second to feature dataframe in transform
half_day_number (bool) – if True: add column with 0 for the first half of the day and 1 for the second to feature dataframe in transform
one_third_day_number (bool) – if True: add column with number of 8-hour interval within day with numeration from 0 to feature dataframe in transform
out_column (Optional[str]) –
base for the name of created columns;
if set the final name is ‘{out_column}_{feature_name}’;
if don’t set, name will be
transform.__repr__()
, repr will be made for transform that creates exactly this column
- Raises
ValueError – if feature has invalid initial params:
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.base.Transform ¶
Fit the transform.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to fit the transform on.
- Returns
The fitted transform instance.
- Return type
- fit_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to transform.
- Returns
Transformed TSDataset.
- Return type
- get_regressors_info() List[str] [source]¶
Return the list with regressors created by the transform.
- Return type
List[str]
- inverse_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Inverse transform TSDataset.
Do nothing.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to be inverse transformed.
- Returns
TSDataset after applying inverse transformation.
- Return type
- classmethod load(path: pathlib.Path) typing_extensions.Self ¶
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters
path (pathlib.Path) – Path to load object from.
- Returns
Loaded object.
- Return type
typing_extensions.Self
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
minute_in_hour_number
,fifteen_minutes_in_hour_number
,hour_number
,half_hour_number
,half_day_number
,one_third_day_number
. Other parameters are expected to be set by the user.There are no restrictions on all
False
values for the flags.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- save(path: pathlib.Path)¶
Save the object.
- Parameters
path (pathlib.Path) – Path to save object to.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Transform TSDataset inplace.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to transform.
- Returns
Transformed TSDataset.
- Return type