OneSegmentTransform¶
- class OneSegmentTransform[source]¶
Bases:
abc.ABC
,etna.core.mixins.BaseMixin
Base class to create one segment transforms to apply to data.
- Inherited-members
Methods
fit
(df)Fit the transform.
fit_transform
(df)Fit and transform Dataframe.
Inverse transform Dataframe.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(df)Transform dataframe.
- abstract fit(df: pandas.core.frame.DataFrame)[source]¶
Fit the transform.
Should be implemented by user.
- Parameters
df (pandas.core.frame.DataFrame) – Dataframe in etna long format.
- fit_transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame [source]¶
Fit and transform Dataframe.
May be reimplemented. But it is not recommended.
- Parameters
df (pandas.core.frame.DataFrame) – Dataframe in etna long format to transform.
- Returns
Transformed Dataframe.
- Return type
pandas.core.frame.DataFrame
- abstract inverse_transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame [source]¶
Inverse transform Dataframe.
Should be reimplemented in the subclasses where necessary.
- Parameters
df (pandas.core.frame.DataFrame) – Dataframe in etna long format to be inverse transformed.
- Returns
Dataframe after applying inverse transformation.
- Return type
pandas.core.frame.DataFrame
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- abstract transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame [source]¶
Transform dataframe.
Should be implemented by user
- Parameters
df (pandas.core.frame.DataFrame) – Dataframe in etna long format.
- Returns
Transformed Dataframe in etna long format.
- Return type
pandas.core.frame.DataFrame