LabelEncoderTransform

class LabelEncoderTransform(in_column: str, out_column: Optional[str] = None, strategy: str = ImputerMode.mean)[source]

Bases: etna.transforms.base.IrreversibleTransform

Encode categorical feature with value between 0 and n_classes-1.

Init LabelEncoderTransform.

Parameters
  • in_column (str) – Name of column to be transformed

  • out_column (Optional[str]) – Name of added column. If not given, use self.__repr__()

  • strategy (str) –

    Filling encoding in not fitted values:

    • If “new_value”, then replace missing values with ‘-1’

    • If “mean”, then replace missing values using the mean in encoded column

    • If “none”, then replace missing values with None

Inherited-members

Methods

fit(ts)

Fit the transform.

fit_transform(ts)

Fit and transform TSDataset.

get_regressors_info()

Return the list with regressors created by the transform.

inverse_transform(ts)

Inverse transform TSDataset.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(ts)

Transform TSDataset inplace.

fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.encoders.categorical.LabelEncoderTransform[source]

Fit the transform.

Parameters

ts (etna.datasets.tsdataset.TSDataset) –

Return type

etna.transforms.encoders.categorical.LabelEncoderTransform

fit_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset

Fit and transform TSDataset.

May be reimplemented. But it is not recommended.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – TSDataset to transform.

Returns

Transformed TSDataset.

Return type

etna.datasets.tsdataset.TSDataset

get_regressors_info() List[str][source]

Return the list with regressors created by the transform.

Return type

List[str]

inverse_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset

Inverse transform TSDataset.

Do nothing.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – TSDataset to be inverse transformed.

Returns

TSDataset after applying inverse transformation.

Return type

etna.datasets.tsdataset.TSDataset

classmethod load(path: pathlib.Path) typing_extensions.Self

Load an object.

Warning

This method uses dill module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.

Parameters

path (pathlib.Path) – Path to load object from.

Returns

Loaded object.

Return type

typing_extensions.Self

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

This grid tunes strategy parameter. Other parameters are expected to be set by the user.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]

save(path: pathlib.Path)

Save the object.

Parameters

path (pathlib.Path) – Path to save object to.

set_params(**params: dict) etna.core.mixins.TMixin

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters
  • **params – Estimator parameters

  • self (etna.core.mixins.TMixin) –

  • params (dict) –

Returns

New instance with changed parameters

Return type

etna.core.mixins.TMixin

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()

Collect all information about etna object in dict.

transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset

Transform TSDataset inplace.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – Dataset to transform.

Returns

Transformed TSDataset.

Return type

etna.datasets.tsdataset.TSDataset