_OneSegmentResampleWithDistributionTransform¶
- class _OneSegmentResampleWithDistributionTransform(in_column: str, distribution_column: str, inplace: bool, out_column: str)[source]¶
Bases:
etna.transforms.base.OneSegmentTransform
_OneSegmentResampleWithDistributionTransform resamples the given column using the distribution of the other column.
Init _OneSegmentResampleWithDistributionTransform.
- Parameters
in_column (str) – name of column to be resampled
distribution_column (str) – name of column to obtain the distribution from
inplace (bool) –
if True, apply resampling inplace to in_column,
if False, add transformed column to dataset
out_column (str) – name of added column. If not given, use
self.__repr__()
- Inherited-members
Methods
fit
(df)Obtain the resampling frequency and distribution from
distribution_column
.fit_transform
(df)Fit and transform Dataframe.
Inverse transform Dataframe.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(df)Resample the in_column using the distribution of distribution_column.
- fit(df: pandas.core.frame.DataFrame) etna.transforms.missing_values.resample._OneSegmentResampleWithDistributionTransform [source]¶
Obtain the resampling frequency and distribution from
distribution_column
.- Parameters
df (pandas.core.frame.DataFrame) – dataframe with data to fit the transform.
- Return type
etna.transforms.missing_values.resample._OneSegmentResampleWithDistributionTransform
- fit_transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame ¶
Fit and transform Dataframe.
May be reimplemented. But it is not recommended.
- Parameters
df (pandas.core.frame.DataFrame) – Dataframe in etna long format to transform.
- Returns
Transformed Dataframe.
- Return type
pandas.core.frame.DataFrame
- inverse_transform(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame [source]¶
Inverse transform Dataframe.
- Parameters
df (pandas.core.frame.DataFrame) –
- Return type
pandas.core.frame.DataFrame
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.