imputation¶
Classes
|
Enum for different imputation strategy. |
|
Transform to fill NaNs in series of a given dataframe. |
- class TimeSeriesImputerTransform(in_column: str = 'target', strategy: str = ImputerMode.constant, window: int = - 1, seasonality: int = 1, default_value: Optional[float] = None, constant_value: float = 0)[source]¶
Transform to fill NaNs in series of a given dataframe.
It is assumed that given series begins with first non NaN value.
This transform can’t fill NaNs in the future, only on train data.
This transform can’t fill NaNs if all values are NaNs. In this case exception is raised.
Warning
This transform can suffer from look-ahead bias in ‘mean’ mode. For transforming data at some timestamp it uses information from the whole train part.
Create instance of TimeSeriesImputerTransform.
- Parameters
in_column (str) – name of processed column
strategy (str) –
filling value in missing timestamps:
If “mean”, then replace missing dates using the mean in fit stage.
If “running_mean” then replace missing dates using mean of subset of data
If “forward_fill” then replace missing dates using last existing value
If “seasonal” then replace missing dates using seasonal moving average
If “constant” then replace missing dates using constant value.
window (int) –
In case of moving average and seasonality.
If
window=-1
all previous dates are taken in accountOtherwise only window previous dates
seasonality (int) – the length of the seasonality
default_value (Optional[float]) – value which will be used to impute the NaNs left after applying the imputer with the chosen strategy
constant_value (float) – value to fill gaps in “constant” strategy
- Raises
ValueError: – if incorrect strategy given
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.base.Transform ¶
Fit the transform.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to fit the transform on.
- Returns
The fitted transform instance.
- Return type
- fit_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to transform.
- Returns
Transformed TSDataset.
- Return type
- get_regressors_info() List[str] [source]¶
Return the list with regressors created by the transform.
- Return type
List[str]
- inverse_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Inverse transform TSDataset.
Apply the _inverse_transform method.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to be inverse transformed.
- Returns
TSDataset after applying inverse transformation.
- Return type
- classmethod load(path: pathlib.Path) typing_extensions.Self ¶
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters
path (pathlib.Path) – Path to load object from.
- Returns
Loaded object.
- Return type
typing_extensions.Self
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
strategy
,window
. Other parameters are expected to be set by the user.Strategy “seasonal” is suggested only if
self.seasonality
is set higher than 1.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- save(path: pathlib.Path)¶
Save the object.
- Parameters
path (pathlib.Path) – Path to save object to.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Transform TSDataset inplace.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to transform.
- Returns
Transformed TSDataset.
- Return type