NonPredictionIntervalContextRequiredAbstractModel¶
- class NonPredictionIntervalContextRequiredAbstractModel[source]¶
Bases:
etna.models.base.AbstractModel
Interface for models that don’t support prediction intervals and need context for prediction.
- Inherited-members
Methods
fit
(ts)Fit model.
forecast
(ts, prediction_size[, ...])Make predictions.
Get internal model/models that are used inside etna class.
load
(path)Load an object.
Get grid for tuning hyperparameters.
predict
(ts, prediction_size[, return_components])Make predictions with using true values as autoregression context if possible (teacher forcing).
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
Context size of the model.
- abstract fit(ts: etna.datasets.tsdataset.TSDataset) etna.models.base.AbstractModel ¶
Fit model.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
- Returns
Model after fit
- Return type
- abstract forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make predictions.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.
return_components (bool) – If True additionally returns forecast components
- Returns
Dataset with predictions
- Return type
- abstract get_model() Union[Any, Dict[str, Any]] ¶
Get internal model/models that are used inside etna class.
Internal model is a model that is used inside etna to forecast segments, e.g.
catboost.CatBoostRegressor
orsklearn.linear_model.Ridge
.- Returns
The result can be of two types:
if model is multi-segment, then the result is internal model
if model is per-segment, then the result is dictionary where key is segment and value is internal model
- Return type
Union[Any, Dict[str, Any]]
- classmethod load(path: pathlib.Path) typing_extensions.Self ¶
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters
path (pathlib.Path) – Path to load object from.
- Returns
Loaded object.
- Return type
typing_extensions.Self
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] ¶
Get grid for tuning hyperparameters.
This is default implementation with empty grid.
- Returns
Empty grid.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- abstract predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make predictions with using true values as autoregression context if possible (teacher forcing).
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.
return_components (bool) – If True additionally returns prediction components
- Returns
Dataset with predictions
- Return type
- save(path: pathlib.Path)¶
Save the object.
- Parameters
path (pathlib.Path) – Path to save object to.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- abstract property context_size: int¶
Context size of the model. Determines how many history points do we ask to pass to the model.