SeasonalMovingAverageModel¶
- class SeasonalMovingAverageModel(window: int = 5, seasonality: int = 7)[source]¶
Bases:
etna.models.base.NonPredictionIntervalContextRequiredAbstractModel
Seasonal moving average.
\[y_{t} = \frac{\sum_{i=1}^{n} y_{t-is} }{n},\]where \(s\) is seasonality, \(n\) is window size (how many history values are taken for forecast).
Notes
This model supports in-sample and out-of-sample prediction decomposition. Prediction components are corresponding target lags with weights of \(1/window\).
Initialize seasonal moving average model.
Length of the context is
window * seasonality
.- Parameters
window (int) – Number of values taken for forecast for each point.
seasonality (int) – Lag between values taken for forecast.
- Inherited-members
Methods
fit
(ts)Fit model.
forecast
(ts, prediction_size[, ...])Make autoregressive forecasts.
Get internal model.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
predict
(ts, prediction_size[, return_components])Make predictions using true values as autoregression context (teacher forcing).
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
Context size of the model.
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.models.seasonal_ma.SeasonalMovingAverageModel [source]¶
Fit model.
For this model, fit does nothing.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
- Returns
Model after fit
- Return type
- forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make autoregressive forecasts.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.
return_components (bool) – If True additionally returns forecast components
- Returns
Dataset with predictions
- Raises
NotImplementedError: – if return_components mode is used
ValueError: – if context isn’t big enough
ValueError: – if forecast context contains NaNs
- Return type
- get_model() etna.models.seasonal_ma.SeasonalMovingAverageModel [source]¶
Get internal model.
- Returns
Itself
- Return type
- classmethod load(path: pathlib.Path) typing_extensions.Self ¶
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters
path (pathlib.Path) – Path to load object from.
- Returns
Loaded object.
- Return type
typing_extensions.Self
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes
window
parameter. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make predictions using true values as autoregression context (teacher forcing).
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.
return_components (bool) – If True additionally returns prediction components
- Returns
Dataset with predictions
- Raises
NotImplementedError: – if return_components mode is used
ValueError: – if context isn’t big enough
ValueError: – if forecast context contains NaNs
- Return type
- save(path: pathlib.Path)¶
Save the object.
- Parameters
path (pathlib.Path) – Path to save object to.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- property context_size: int¶
Context size of the model.