PredictionIntervalContextRequiredAbstractModel

class PredictionIntervalContextRequiredAbstractModel[source]

Bases: etna.models.base.AbstractModel

Interface for models that support prediction intervals and need context for prediction.

Inherited-members

Methods

fit(ts)

Fit model.

forecast(ts, prediction_size[, ...])

Make predictions.

get_model()

Get internal model/models that are used inside etna class.

load(path)

Load an object.

params_to_tune()

Get grid for tuning hyperparameters.

predict(ts, prediction_size[, ...])

Make predictions with using true values as autoregression context if possible (teacher forcing).

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

Attributes

context_size

Context size of the model.

abstract fit(ts: etna.datasets.tsdataset.TSDataset) etna.models.base.AbstractModel

Fit model.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

Returns

Model after fit

Return type

etna.models.base.AbstractModel

abstract forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions.

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns forecast components

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

abstract get_model() Union[Any, Dict[str, Any]]

Get internal model/models that are used inside etna class.

Internal model is a model that is used inside etna to forecast segments, e.g. catboost.CatBoostRegressor or sklearn.linear_model.Ridge.

Returns

The result can be of two types:

  • if model is multi-segment, then the result is internal model

  • if model is per-segment, then the result is dictionary where key is segment and value is internal model

Return type

Union[Any, Dict[str, Any]]

classmethod load(path: pathlib.Path) typing_extensions.Self

Load an object.

Warning

This method uses dill module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.

Parameters

path (pathlib.Path) – Path to load object from.

Returns

Loaded object.

Return type

typing_extensions.Self

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution]

Get grid for tuning hyperparameters.

This is default implementation with empty grid.

Returns

Empty grid.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]

abstract predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset[source]

Make predictions with using true values as autoregression context if possible (teacher forcing).

Parameters
  • ts (etna.datasets.tsdataset.TSDataset) – Dataset with features

  • prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval

  • return_components (bool) – If True additionally returns prediction components

Returns

Dataset with predictions

Return type

etna.datasets.tsdataset.TSDataset

save(path: pathlib.Path)

Save the object.

Parameters

path (pathlib.Path) – Path to save object to.

set_params(**params: dict) etna.core.mixins.TMixin

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters
  • **params – Estimator parameters

  • self (etna.core.mixins.TMixin) –

  • params (dict) –

Returns

New instance with changed parameters

Return type

etna.core.mixins.TMixin

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()

Collect all information about etna object in dict.

abstract property context_size: int

Context size of the model. Determines how many history points do we ask to pass to the model.