FeatureGaleShapley

class FeatureGaleShapley(name: str, ranked_candidates: List[str])[source]

Bases: etna.transforms.feature_selection.gale_shapley.BaseGaleShapley

Class for feature member of Gale-Shapley matching.

Init BaseGaleShapley.

Parameters
  • name (str) – name of object

  • ranked_candidates (List[str]) – list of preferences for the object ranked descending by importance

Inherited-members

Methods

check_segment(segment)

Check if given segment is better than current match according to preference list.

reset_tmp_match()

Break tmp current.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

update_tmp_match(name)

Create match with object name.

check_segment(segment: str) bool[source]

Check if given segment is better than current match according to preference list.

Parameters

segment (str) – segment to check

Returns

returns True if given segment is a better candidate than current match.

Return type

is_better

reset_tmp_match()

Break tmp current.

set_params(**params: dict) etna.core.mixins.TMixin

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters
  • **params – Estimator parameters

  • self (etna.core.mixins.TMixin) –

  • params (dict) –

Returns

New instance with changed parameters

Return type

etna.core.mixins.TMixin

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()

Collect all information about etna object in dict.

update_tmp_match(name: str)

Create match with object name.

Parameters

name (str) – name of candidate to match