gale_shapley¶
Classes
|
Base class for a member of Gale-Shapley matching. |
|
Class for feature member of Gale-Shapley matching. |
|
Transform that provides feature filtering by Gale-Shapley matching algorithm according to the relevance table. |
|
Class for handling Gale-Shapley matching algo. |
|
Class for segment member of Gale-Shapley matching. |
- class BaseGaleShapley(name: str, ranked_candidates: List[str])[source]¶
Base class for a member of Gale-Shapley matching.
Init BaseGaleShapley.
- Parameters
name (str) – name of object
ranked_candidates (List[str]) – list of preferences for the object ranked descending by importance
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- class FeatureGaleShapley(name: str, ranked_candidates: List[str])[source]¶
Class for feature member of Gale-Shapley matching.
Init BaseGaleShapley.
- Parameters
name (str) – name of object
ranked_candidates (List[str]) – list of preferences for the object ranked descending by importance
- check_segment(segment: str) bool [source]¶
Check if given segment is better than current match according to preference list.
- Parameters
segment (str) – segment to check
- Returns
returns True if given segment is a better candidate than current match.
- Return type
is_better
- reset_tmp_match()¶
Break tmp current.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- update_tmp_match(name: str)¶
Create match with object name.
- Parameters
name (str) – name of candidate to match
- class GaleShapleyFeatureSelectionTransform(relevance_table: etna.analysis.feature_relevance.relevance.RelevanceTable, top_k: int, features_to_use: Union[List[str], Literal['all']] = 'all', use_rank: bool = False, return_features: bool = False, **relevance_params)[source]¶
Transform that provides feature filtering by Gale-Shapley matching algorithm according to the relevance table.
Transform works with any type of features, however most of the models works only with regressors. Therefore, it is recommended to pass the regressors into the feature selection transforms.
As input, we have a table of relevances with size \(N\_{f} imes N\_{s}\) where \(N\_{f}\) – number of features, \(N\_{s}\) – number of segments. Procedure of filtering features consist of :math:`lceil
rac{k}{N_{s}} ceil` iterations.
Algorithm of each iteration:
build a matching between segments and features by Gale–Shapley algorithm
according to the relevance table, during the matching segments send proposals to features; - select features to add by taking matched feature for each segment; - add selected features to accumulated list of selected features taking into account that this list shouldn’t exceed the size of
top_k
; - remove added features from future consideration.Init GaleShapleyFeatureSelectionTransform.
- Parameters
relevance_table (etna.analysis.feature_relevance.relevance.RelevanceTable) – class to build relevance table
top_k (int) – number of features that should be selected from all the given ones
features_to_use (Union[List[str], Literal['all']]) – columns of the dataset to select from if “all” value is given, all columns are used
use_rank (bool) – if True, use rank in relevance table computation
return_features (bool) – indicates whether to return features or not.
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.base.Transform ¶
Fit the transform.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to fit the transform on.
- Returns
The fitted transform instance.
- Return type
- fit_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to transform.
- Returns
Transformed TSDataset.
- Return type
- get_regressors_info() List[str] ¶
Return the list with regressors created by the transform.
- Return type
List[str]
- inverse_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Inverse transform TSDataset.
Apply the _inverse_transform method.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to be inverse transformed.
- Returns
TSDataset after applying inverse transformation.
- Return type
- classmethod load(path: pathlib.Path) typing_extensions.Self ¶
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters
path (pathlib.Path) – Path to load object from.
- Returns
Loaded object.
- Return type
typing_extensions.Self
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
top_k
,use_rank
. Other parameters are expected to be set by the user.For
top_k
parameter the maximum suggested value is not greater thanself.top_k
.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- save(path: pathlib.Path)¶
Save the object.
- Parameters
path (pathlib.Path) – Path to save object to.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Transform TSDataset inplace.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to transform.
- Returns
Transformed TSDataset.
- Return type
- class GaleShapleyMatcher(segments: List[etna.transforms.feature_selection.gale_shapley.SegmentGaleShapley], features: List[etna.transforms.feature_selection.gale_shapley.FeatureGaleShapley])[source]¶
Class for handling Gale-Shapley matching algo.
Init GaleShapleyMatcher.
- Parameters
segments (List[etna.transforms.feature_selection.gale_shapley.SegmentGaleShapley]) – list of segments to build matches
features (List[etna.transforms.feature_selection.gale_shapley.FeatureGaleShapley]) – list of features to build matches
- static break_match(segment: etna.transforms.feature_selection.gale_shapley.SegmentGaleShapley, feature: etna.transforms.feature_selection.gale_shapley.FeatureGaleShapley)[source]¶
Break match between segment and feature.
- Parameters
segment (etna.transforms.feature_selection.gale_shapley.SegmentGaleShapley) – segment to break match
feature (etna.transforms.feature_selection.gale_shapley.FeatureGaleShapley) – feature to break match
- static match(segment: etna.transforms.feature_selection.gale_shapley.SegmentGaleShapley, feature: etna.transforms.feature_selection.gale_shapley.FeatureGaleShapley)[source]¶
Build match between segment and feature.
- Parameters
segment (etna.transforms.feature_selection.gale_shapley.SegmentGaleShapley) – segment to match
feature (etna.transforms.feature_selection.gale_shapley.FeatureGaleShapley) – feature to match
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- class SegmentGaleShapley(name: str, ranked_candidates: List[str])[source]¶
Class for segment member of Gale-Shapley matching.
Init SegmentGaleShapley.
- Parameters
name (str) – name of segment
ranked_candidates (List[str]) – list of features sorted descending by importance
- get_next_candidate() Optional[str] [source]¶
Get name of the next feature to try.
- Returns
name of feature
- Return type
name
- reset_tmp_match()¶
Break tmp current.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.