sklearn_based¶
Classes
SklearnPreprocessingPerIntervalModel applies PerIntervalModel interface for sklearn preprocessings. |
|
|
SklearnRegressionPerIntervalModel applies PerIntervalModel interface for sklearn-like regression models. |
- class SklearnPreprocessingPerIntervalModel(preprocessing: sklearn.base.TransformerMixin)[source]¶
SklearnPreprocessingPerIntervalModel applies PerIntervalModel interface for sklearn preprocessings.
- Parameters
preprocessing (sklearn.base.TransformerMixin) –
- fit(features: numpy.ndarray, target: numpy.ndarray, *args, **kwargs) etna.transforms.decomposition.change_points_based.per_interval_models.sklearn_based.SklearnPreprocessingPerIntervalModel [source]¶
Fit preprocessing with given features and targets.
- Parameters
features (numpy.ndarray) – features to fit preprocessing with
target (numpy.ndarray) – targets to apply preprocessing to
- Returns
fitted SklearnPreprocessingPerIntervalModel
- Return type
self
- inverse(features: numpy.ndarray) numpy.ndarray [source]¶
Apply inverse transformation.
- Parameters
features (numpy.ndarray) – features to apply inverse transformation
- Returns
features after inverse transformation
- Return type
inversed data
- predict(features: numpy.ndarray, *args, **kwargs) numpy.ndarray [source]¶
Apply preprocessing to given features.
- Parameters
features (numpy.ndarray) – features to make preprocessing for
- Returns
preprocessing’s prediction for given features
- Return type
prediction
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- class SklearnRegressionPerIntervalModel(model: Optional[sklearn.base.RegressorMixin] = None)[source]¶
SklearnRegressionPerIntervalModel applies PerIntervalModel interface for sklearn-like regression models.
Init SklearnPerIntervalModel.
- Parameters
model (Optional[sklearn.base.RegressorMixin]) – model with sklearn interface to use for interval processing
- fit(features: numpy.ndarray, target: numpy.ndarray, *args, **kwargs) etna.transforms.decomposition.change_points_based.per_interval_models.sklearn_based.SklearnRegressionPerIntervalModel [source]¶
Fit model with given features and targets.
- Parameters
features (numpy.ndarray) – features to fit model with
target (numpy.ndarray) – targets to fit model
- Returns
fitted SklearnRegressionPerIntervalModel
- Return type
self
- predict(features: numpy.ndarray, *args, **kwargs) numpy.ndarray [source]¶
Make prediction for given features.
- Parameters
features (numpy.ndarray) – features to make prediction for
- Returns
model’s prediction for given features
- Return type
prediction
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.