deseasonal¶
Classes
|
Enum for different types of deseasonality model. |
|
Transform that uses |
|
Init _OneSegmentDeseasonalityTransform. |
- class DeseasonalityTransform(in_column: str, period: int, model: Literal['additive', 'multiplicative'] = 'additive')[source]¶
Transform that uses
statsmodels.tsa.seasonal.seasonal_decompose()
to subtract seasonal component from the data.Warning
This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.
Init DeseasonalityTransform.
- Parameters
in_column (str) – name of processed column
period (int) – size of seasonality
model (Literal['additive', 'multiplicative']) – ‘additive’ (Y[t] = T[t] + S[t] + e[t], default option) or ‘multiplicative’ (Y[t] = T[t] * S[t] * e[t])
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.base.Transform ¶
Fit the transform.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to fit the transform on.
- Returns
The fitted transform instance.
- Return type
- fit_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to transform.
- Returns
Transformed TSDataset.
- Return type
- get_regressors_info() List[str] [source]¶
Return the list with regressors created by the transform.
- Return type
List[str]
- inverse_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Inverse transform TSDataset.
Apply the _inverse_transform method.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to be inverse transformed.
- Returns
TSDataset after applying inverse transformation.
- Return type
- classmethod load(path: pathlib.Path) typing_extensions.Self ¶
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters
path (pathlib.Path) – Path to load object from.
- Returns
Loaded object.
- Return type
typing_extensions.Self
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
model
. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- save(path: pathlib.Path)¶
Save the object.
- Parameters
path (pathlib.Path) – Path to save object to.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Transform TSDataset inplace.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to transform.
- Returns
Transformed TSDataset.
- Return type