SklearnRegressionPerIntervalModel

class SklearnRegressionPerIntervalModel(model: Optional[sklearn.base.RegressorMixin] = None)[source]

Bases: etna.transforms.decomposition.change_points_based.per_interval_models.base.PerIntervalModel

SklearnRegressionPerIntervalModel applies PerIntervalModel interface for sklearn-like regression models.

Init SklearnPerIntervalModel.

Parameters

model (Optional[sklearn.base.RegressorMixin]) – model with sklearn interface to use for interval processing

Inherited-members

Methods

fit(features, target, *args, **kwargs)

Fit model with given features and targets.

predict(features, *args, **kwargs)

Make prediction for given features.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

fit(features: numpy.ndarray, target: numpy.ndarray, *args, **kwargs) etna.transforms.decomposition.change_points_based.per_interval_models.sklearn_based.SklearnRegressionPerIntervalModel[source]

Fit model with given features and targets.

Parameters
  • features (numpy.ndarray) – features to fit model with

  • target (numpy.ndarray) – targets to fit model

Returns

fitted SklearnRegressionPerIntervalModel

Return type

self

predict(features: numpy.ndarray, *args, **kwargs) numpy.ndarray[source]

Make prediction for given features.

Parameters

features (numpy.ndarray) – features to make prediction for

Returns

model’s prediction for given features

Return type

prediction

set_params(**params: dict) etna.core.mixins.TMixin

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters
  • **params – Estimator parameters

  • self (etna.core.mixins.TMixin) –

  • params (dict) –

Returns

New instance with changed parameters

Return type

etna.core.mixins.TMixin

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()

Collect all information about etna object in dict.