base¶
Classes
Class to handle intervals in change point based transforms. |
- class PerIntervalModel[source]¶
Class to handle intervals in change point based transforms.
PerIntervalModel is a class to process intervals between change points in
change_points_based
transforms.- abstract fit(features: numpy.ndarray, target: numpy.ndarray, *args, **kwargs) etna.transforms.decomposition.change_points_based.per_interval_models.base.PerIntervalModel [source]¶
Fit per interval model with given params.
- Parameters
features (numpy.ndarray) –
target (numpy.ndarray) –
- Return type
etna.transforms.decomposition.change_points_based.per_interval_models.base.PerIntervalModel
- abstract predict(features: numpy.ndarray, *args, **kwargs) numpy.ndarray [source]¶
Make prediction with per interval model.
- Parameters
features (numpy.ndarray) –
- Return type
numpy.ndarray
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.