DTWDistance¶
- class DTWDistance(points_distance: typing.Callable[[float, float], float] = CPUDispatcher(<function simple_dist>), trim_series: bool = False)[source]¶
Bases:
etna.clustering.distances.base.Distance
DTW distance handler.
Init DTWDistance.
- Parameters
points_distance (Callable[[float, float], float]) – function to be used for computation of distance between two series’ points
trim_series (bool) – True if it is necessary to trim series, default False.
Notes
Specifying manual
points_distance
might slow down the clustering algorithm.- Inherited-members
- Parameters
points_distance (Callable[[float, float], float]) –
trim_series (bool) –
Methods
get_average
(ts, **kwargs)Get series that minimizes squared distance to given ones according to the Distance.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
- get_average(ts: TSDataset, **kwargs: Dict[str, Any]) pandas.core.frame.DataFrame ¶
Get series that minimizes squared distance to given ones according to the Distance.
- Parameters
ts (TSDataset) – TSDataset with series to be averaged
kwargs (Dict[str, Any]) – additional parameters for averaging
- Returns
dataframe with columns “timestamp” and “target” that contains the series
- Return type
pd.DataFrame
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.