DistanceMatrix¶
- class DistanceMatrix(distance: etna.clustering.distances.base.Distance)[source]¶
Bases:
etna.core.mixins.BaseMixin
DistanceMatrix computes distance matrix from TSDataset.
Init DistanceMatrix.
- Parameters
distance (etna.clustering.distances.base.Distance) – class for distance measurement
- Inherited-members
Methods
fit
(ts)Fit distance matrix: get timeseries from ts and compute pairwise distances.
fit_predict
(ts)Compute distance matrix and return it.
predict
()Get distance matrix.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
- fit(ts: TSDataset) DistanceMatrix [source]¶
Fit distance matrix: get timeseries from ts and compute pairwise distances.
- Parameters
ts (TSDataset) – TSDataset with timeseries
- Returns
fitted DistanceMatrix object
- Return type
self
- fit_predict(ts: TSDataset) numpy.ndarray [source]¶
Compute distance matrix and return it.
- Parameters
ts (TSDataset) – TSDataset with timeseries to compute matrix with
- Returns
2D array with distances between series
- Return type
np.ndarray
- predict() numpy.ndarray [source]¶
Get distance matrix.
- Returns
2D array with distances between series
- Return type
np.ndarray
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.