distance_matrix

Classes

DistanceMatrix(distance)

DistanceMatrix computes distance matrix from TSDataset.

class DistanceMatrix(distance: etna.clustering.distances.base.Distance)[source]

DistanceMatrix computes distance matrix from TSDataset.

Init DistanceMatrix.

Parameters

distance (etna.clustering.distances.base.Distance) – class for distance measurement

fit(ts: TSDataset) DistanceMatrix[source]

Fit distance matrix: get timeseries from ts and compute pairwise distances.

Parameters

ts (TSDataset) – TSDataset with timeseries

Returns

fitted DistanceMatrix object

Return type

self

fit_predict(ts: TSDataset) numpy.ndarray[source]

Compute distance matrix and return it.

Parameters

ts (TSDataset) – TSDataset with timeseries to compute matrix with

Returns

2D array with distances between series

Return type

np.ndarray

predict() numpy.ndarray[source]

Get distance matrix.

Returns

2D array with distances between series

Return type

np.ndarray

set_params(**params: dict) etna.core.mixins.TMixin

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters
  • **params – Estimator parameters

  • self (etna.core.mixins.TMixin) –

  • params (dict) –

Returns

New instance with changed parameters

Return type

etna.core.mixins.TMixin

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()

Collect all information about etna object in dict.