Deep learning examples

b0581b1f217041c29039b41f00c02243

This notebooks contains examples with neural network models.

Table of Contents

[1]:
import torch
import random

import pandas as pd
import numpy as np

from etna.datasets.tsdataset import TSDataset
from etna.pipeline import Pipeline
from etna.transforms import DateFlagsTransform
from etna.transforms import LagTransform
from etna.transforms import LinearTrendTransform
from etna.metrics import SMAPE, MAPE, MAE
from etna.analysis import plot_backtest
from etna.models import SeasonalMovingAverageModel

import warnings


def set_seed(seed: int = 42):
    """Set random seed for reproducibility."""
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)


warnings.filterwarnings("ignore")
/workdir/etna/etna/settings.py:79: UserWarning: etna[statsforecast] is not available, to install it, run `pip install etna[statsforecast]`
  warnings.warn("etna[statsforecast] is not available, to install it, run `pip install etna[statsforecast]`")

1. Creating TSDataset

We are going to take some toy dataset. Let’s load and look at it.

[2]:
original_df = pd.read_csv("data/example_dataset.csv")
original_df.head()
[2]:
timestamp segment target
0 2019-01-01 segment_a 170
1 2019-01-02 segment_a 243
2 2019-01-03 segment_a 267
3 2019-01-04 segment_a 287
4 2019-01-05 segment_a 279

Our library works with the special data structure TSDataset. Let’s create it as it was done in “Get started” notebook.

[3]:
df = TSDataset.to_dataset(original_df)
ts = TSDataset(df, freq="D")
ts.head(5)
[3]:
segment segment_a segment_b segment_c segment_d
feature target target target target
timestamp
2019-01-01 170 102 92 238
2019-01-02 243 123 107 358
2019-01-03 267 130 103 366
2019-01-04 287 138 103 385
2019-01-05 279 137 104 384

2. Architecture

Our library uses PyTorch Forecasting to work with time series neural networks. There are two ways to use pytorch-forecasting models: default one and via using PytorchForecastingDatasetBuilder for using extra features.

To include extra features we use PytorchForecastingDatasetBuilder class.

Let’s look at it closer.

[4]:
from etna.models.nn.utils import PytorchForecastingDatasetBuilder
[5]:
?PytorchForecastingDatasetBuilder
Init signature:
PytorchForecastingDatasetBuilder(
    max_encoder_length: int = 30,
    min_encoder_length: Union[int, NoneType] = None,
    min_prediction_idx: Union[int, NoneType] = None,
    min_prediction_length: Union[int, NoneType] = None,
    max_prediction_length: int = 1,
    static_categoricals: Union[List[str], NoneType] = None,
    static_reals: Union[List[str], NoneType] = None,
    time_varying_known_categoricals: Union[List[str], NoneType] = None,
    time_varying_known_reals: Union[List[str], NoneType] = None,
    time_varying_unknown_categoricals: Union[List[str], NoneType] = None,
    time_varying_unknown_reals: Union[List[str], NoneType] = None,
    variable_groups: Union[Dict[str, List[int]], NoneType] = None,
    constant_fill_strategy: Union[Dict[str, Union[str, float, int, bool]], NoneType] = None,
    allow_missing_timesteps: bool = True,
    lags: Union[Dict[str, List[int]], NoneType] = None,
    add_relative_time_idx: bool = True,
    add_target_scales: bool = True,
    add_encoder_length: Union[bool, str] = True,
    target_normalizer: Union[pytorch_forecasting.data.encoders.TorchNormalizer, pytorch_forecasting.data.encoders.NaNLabelEncoder, pytorch_forecasting.data.encoders.EncoderNormalizer, str, List[Union[pytorch_forecasting.data.encoders.TorchNormalizer, pytorch_forecasting.data.encoders.NaNLabelEncoder, pytorch_forecasting.data.encoders.EncoderNormalizer]], Tuple[Union[pytorch_forecasting.data.encoders.TorchNormalizer, pytorch_forecasting.data.encoders.NaNLabelEncoder, pytorch_forecasting.data.encoders.EncoderNormalizer]]] = 'auto',
    categorical_encoders: Union[Dict[str, pytorch_forecasting.data.encoders.NaNLabelEncoder], NoneType] = None,
    scalers: Union[Dict[str, Union[sklearn.preprocessing._data.StandardScaler, sklearn.preprocessing._data.RobustScaler, pytorch_forecasting.data.encoders.TorchNormalizer, pytorch_forecasting.data.encoders.EncoderNormalizer]], NoneType] = None,
)
Docstring:      Builder for PytorchForecasting dataset.
Init docstring:
Init dataset builder.

Parameters here is used for initialization of :py:class:`pytorch_forecasting.data.timeseries.TimeSeriesDataSet` object.
File:           /workdir/etna/etna/models/nn/utils.py
Type:           type
Subclasses:

We can see a pretty scary signature, but don’t panic, we will look at the most important parameters.

  • time_varying_known_reals — known real values that change across the time (real regressors), now it it necessary to add “time_idx” variable to the list;

  • time_varying_unknown_reals — our real value target, set it to ["target"];

  • max_prediction_length — our horizon for forecasting;

  • max_encoder_length — length of past context to use;

  • static_categoricals — static categorical values, for example, if we use multiple segments it can be some its characteristics including identifier: “segment”;

  • time_varying_known_categoricals — known categorical values that change across the time (categorical regressors);

  • target_normalizer — class for normalization targets across different segments.

Our library currently supports these models: * DeepAR, * TFT.

3. Testing models

In this section we will test our models on example.

3.1 DeepAR

Before training let’s fix seeds for reproducibility.

[6]:
set_seed()

Default way

[7]:
from etna.models.nn import DeepARModel

HORIZON = 7


model_deepar = DeepARModel(
    encoder_length=HORIZON,
    decoder_length=HORIZON,
    trainer_params=dict(max_epochs=150, gpus=0, gradient_clip_val=0.1),
    lr=0.01,
    train_batch_size=64,
)
metrics = [SMAPE(), MAPE(), MAE()]

pipeline_deepar = Pipeline(model=model_deepar, horizon=HORIZON)
[8]:
metrics_deepar, forecast_deepar, fold_info_deepar = pipeline_deepar.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 0
3 | rnn                    | LSTM                   | 1.6 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
1.6 K     Trainable params
0         Non-trainable params
1.6 K     Total params
0.006     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=150` reached.
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:  2.2min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 0
3 | rnn                    | LSTM                   | 1.6 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
1.6 K     Trainable params
0         Non-trainable params
1.6 K     Total params
0.006     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=150` reached.
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:  4.4min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 0
3 | rnn                    | LSTM                   | 1.6 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
1.6 K     Trainable params
0         Non-trainable params
1.6 K     Total params
0.006     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=150` reached.
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:  6.6min
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:  6.6min
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    2.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    4.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    6.2s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    6.2s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[9]:
metrics_deepar
[9]:
segment SMAPE MAPE MAE fold_number
0 segment_a 11.457992 10.746771 58.296635 0
0 segment_a 3.176016 3.188000 16.515830 1
0 segment_a 7.292182 7.075445 38.055716 2
2 segment_b 8.014026 7.647106 20.117401 0
2 segment_b 4.404582 4.387299 10.633224 1
2 segment_b 5.720617 6.126173 13.026169 2
1 segment_c 6.136951 6.092212 10.315135 0
1 segment_c 4.311425 4.218124 7.638395 1
1 segment_c 9.405831 9.125025 16.483989 2
3 segment_d 5.807069 5.653955 50.961984 0
3 segment_d 4.531891 4.636113 36.712263 1
3 segment_d 3.950312 3.901861 31.104091 2

To summarize it we will take mean value of SMAPE metric because it is scale tolerant.

[10]:
score = metrics_deepar["SMAPE"].mean()
print(f"Average SMAPE for DeepAR: {score:.3f}")
Average SMAPE for DeepAR: 6.184

Dataset Builder: creating dataset for DeepAR with etxtra features.

[11]:
from pytorch_forecasting.data import GroupNormalizer

set_seed()

HORIZON = 7

transform_date = DateFlagsTransform(day_number_in_week=True, day_number_in_month=False, out_column="dateflag")
num_lags = 10
transform_lag = LagTransform(
    in_column="target",
    lags=[HORIZON + i for i in range(num_lags)],
    out_column="target_lag",
)
lag_columns = [f"target_lag_{HORIZON+i}" for i in range(num_lags)]

dataset_builder_deepar = PytorchForecastingDatasetBuilder(
    max_encoder_length=HORIZON,
    max_prediction_length=HORIZON,
    time_varying_known_reals=["time_idx"] + lag_columns,
    time_varying_unknown_reals=["target"],
    time_varying_known_categoricals=["dateflag_day_number_in_week"],
    target_normalizer=GroupNormalizer(groups=["segment"]),
)

Now we are going to start backtest.

[12]:
from etna.models.nn import DeepARModel


model_deepar = DeepARModel(
    dataset_builder=dataset_builder_deepar,
    trainer_params=dict(max_epochs=150, gpus=0, gradient_clip_val=0.1),
    lr=0.01,
    train_batch_size=64,
)
metrics = [SMAPE(), MAPE(), MAE()]

pipeline_deepar = Pipeline(
    model=model_deepar,
    horizon=HORIZON,
    transforms=[transform_lag, transform_date],
)
[13]:
metrics_deepar, forecast_deepar, fold_info_deepar = pipeline_deepar.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 35
3 | rnn                    | LSTM                   | 2.2 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
2.3 K     Trainable params
0         Non-trainable params
2.3 K     Total params
0.009     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=150` reached.
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:  2.9min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 35
3 | rnn                    | LSTM                   | 2.2 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
2.3 K     Trainable params
0         Non-trainable params
2.3 K     Total params
0.009     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=150` reached.
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:  5.3min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name                   | Type                   | Params
------------------------------------------------------------------
0 | loss                   | NormalDistributionLoss | 0
1 | logging_metrics        | ModuleList             | 0
2 | embeddings             | MultiEmbedding         | 35
3 | rnn                    | LSTM                   | 2.2 K
4 | distribution_projector | Linear                 | 22
------------------------------------------------------------------
2.3 K     Trainable params
0         Non-trainable params
2.3 K     Total params
0.009     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=150` reached.
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:  7.7min
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:  7.7min
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    1.9s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    3.9s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    5.9s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    5.9s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s

Let’s compare results across different segments.

[14]:
metrics_deepar
[14]:
segment SMAPE MAPE MAE fold_number
0 segment_a 6.352868 6.129626 32.770216 0
0 segment_a 3.673934 3.631974 18.586169 1
0 segment_a 4.346741 4.239817 23.106284 2
2 segment_b 6.138559 5.955817 15.267417 0
2 segment_b 3.833559 3.768375 9.465267 1
2 segment_b 3.281513 3.298270 7.616302 2
1 segment_c 5.416995 5.287058 9.203803 0
1 segment_c 5.808158 5.624216 10.211849 1
1 segment_c 5.375488 5.229208 9.724448 2
3 segment_d 5.030112 4.966045 41.805089 0
3 segment_d 4.040232 4.141372 32.495893 1
3 segment_d 3.253992 3.182566 28.029550 2

To summarize it we will take mean value of SMAPE metric because it is scale tolerant.

[15]:
score = metrics_deepar["SMAPE"].mean()
print(f"Average SMAPE for DeepAR: {score:.3f}")
Average SMAPE for DeepAR: 4.713

Visualize results.

[16]:
plot_backtest(forecast_deepar, ts, history_len=20)
../_images/tutorials_NN_examples_36_0.png

3.2 TFT

Let’s move to the next model.

[17]:
set_seed()

Default way

[18]:
from etna.models.nn import TFTModel

model_tft = TFTModel(
    encoder_length=HORIZON,
    decoder_length=HORIZON,
    trainer_params=dict(max_epochs=200, gpus=0, gradient_clip_val=0.1),
    lr=0.01,
    train_batch_size=64,
)

pipeline_tft = Pipeline(
    model=model_tft,
    horizon=HORIZON,
)
[19]:
metrics_tft, forecast_tft, fold_info_tft = pipeline_tft.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 0
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.7 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.8 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.2 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.4 K    Trainable params
0         Non-trainable params
18.4 K    Total params
0.074     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=200` reached.
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:  4.3min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 0
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.7 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.8 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.2 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.4 K    Trainable params
0         Non-trainable params
18.4 K    Total params
0.074     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=200` reached.
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:  8.9min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 0
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.7 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.8 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.2 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.4 K    Trainable params
0         Non-trainable params
18.4 K    Total params
0.074     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=200` reached.
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 13.5min
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 13.5min
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    2.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    4.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    6.2s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    6.2s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[20]:
metrics_tft
[20]:
segment SMAPE MAPE MAE fold_number
0 segment_a 38.883908 32.178844 174.973873 0
0 segment_a 10.944611 10.876538 56.220559 1
0 segment_a 10.633444 10.721340 55.923584 2
2 segment_b 34.618967 43.120913 103.168971 0
2 segment_b 9.714098 10.009747 23.389893 1
2 segment_b 8.851617 9.419366 20.456857 2
1 segment_c 69.259289 106.946676 181.883262 0
1 segment_c 7.433419 7.867012 13.065395 1
1 segment_c 8.774654 9.084464 15.920347 2
3 segment_d 81.639359 57.626738 503.402440 0
3 segment_d 17.821837 16.349777 138.235229 1
3 segment_d 25.455609 22.157028 198.000828 2
[21]:
score = metrics_tft["SMAPE"].mean()
print(f"Average SMAPE for TFT: {score:.3f}")
Average SMAPE for TFT: 27.003

Dataset Builder

[22]:
set_seed()


transform_date = DateFlagsTransform(day_number_in_week=True, day_number_in_month=False, out_column="dateflag")
num_lags = 10
transform_lag = LagTransform(
    in_column="target",
    lags=[HORIZON + i for i in range(num_lags)],
    out_column="target_lag",
)
lag_columns = [f"target_lag_{HORIZON+i}" for i in range(num_lags)]

dataset_builder_tft = PytorchForecastingDatasetBuilder(
    max_encoder_length=HORIZON,
    max_prediction_length=HORIZON,
    time_varying_known_reals=["time_idx"],
    time_varying_unknown_reals=["target"],
    time_varying_known_categoricals=["dateflag_day_number_in_week"],
    static_categoricals=["segment"],
    target_normalizer=GroupNormalizer(groups=["segment"]),
)
[23]:
model_tft = TFTModel(
    dataset_builder=dataset_builder_tft,
    trainer_params=dict(max_epochs=200, gpus=0, gradient_clip_val=0.1),
    lr=0.01,
    train_batch_size=64,
)

pipeline_tft = Pipeline(
    model=model_tft,
    horizon=HORIZON,
    transforms=[transform_lag, transform_date],
)
[24]:
metrics_tft, forecast_tft, fold_info_tft = pipeline_tft.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 47
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.8 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.9 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.3 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.9 K    Trainable params
0         Non-trainable params
18.9 K    Total params
0.075     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=200` reached.
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:  4.7min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 47
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.8 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.9 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.3 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.9 K    Trainable params
0         Non-trainable params
18.9 K    Total params
0.075     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=200` reached.
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:  9.5min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

   | Name                               | Type                            | Params
----------------------------------------------------------------------------------------
0  | loss                               | QuantileLoss                    | 0
1  | logging_metrics                    | ModuleList                      | 0
2  | input_embeddings                   | MultiEmbedding                  | 47
3  | prescalers                         | ModuleDict                      | 96
4  | static_variable_selection          | VariableSelectionNetwork        | 1.8 K
5  | encoder_variable_selection         | VariableSelectionNetwork        | 1.9 K
6  | decoder_variable_selection         | VariableSelectionNetwork        | 1.3 K
7  | static_context_variable_selection  | GatedResidualNetwork            | 1.1 K
8  | static_context_initial_hidden_lstm | GatedResidualNetwork            | 1.1 K
9  | static_context_initial_cell_lstm   | GatedResidualNetwork            | 1.1 K
10 | static_context_enrichment          | GatedResidualNetwork            | 1.1 K
11 | lstm_encoder                       | LSTM                            | 2.2 K
12 | lstm_decoder                       | LSTM                            | 2.2 K
13 | post_lstm_gate_encoder             | GatedLinearUnit                 | 544
14 | post_lstm_add_norm_encoder         | AddNorm                         | 32
15 | static_enrichment                  | GatedResidualNetwork            | 1.4 K
16 | multihead_attn                     | InterpretableMultiHeadAttention | 676
17 | post_attn_gate_norm                | GateAddNorm                     | 576
18 | pos_wise_ff                        | GatedResidualNetwork            | 1.1 K
19 | pre_output_gate_norm               | GateAddNorm                     | 576
20 | output_layer                       | Linear                          | 119
----------------------------------------------------------------------------------------
18.9 K    Trainable params
0         Non-trainable params
18.9 K    Total params
0.075     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=200` reached.
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 14.5min
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 14.5min
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    2.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    4.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    6.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    6.1s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[25]:
metrics_tft
[25]:
segment SMAPE MAPE MAE fold_number
0 segment_a 4.088854 3.920815 21.469369 0
0 segment_a 5.622753 5.483937 29.614986 1
0 segment_a 4.488632 4.333540 25.029803 2
2 segment_b 7.784580 7.419946 19.432499 0
2 segment_b 4.084682 4.040876 9.863055 1
2 segment_b 4.433536 4.535382 10.086642 2
1 segment_c 3.787958 3.801392 6.402876 0
1 segment_c 3.944129 3.856418 7.111524 1
1 segment_c 7.349261 7.034143 13.413960 2
3 segment_d 9.401569 9.331692 78.947928 0
3 segment_d 5.911709 6.061150 47.493705 1
3 segment_d 6.013355 5.874746 50.737017 2
[26]:
score = metrics_tft["SMAPE"].mean()
print(f"Average SMAPE for TFT: {score:.3f}")
Average SMAPE for TFT: 5.576
[27]:
plot_backtest(forecast_tft, ts, history_len=20)
../_images/tutorials_NN_examples_51_0.png

3.3 Simple model

For comparison let’s train a much more simpler model.

[28]:
model_sma = SeasonalMovingAverageModel(window=5, seasonality=7)
linear_trend_transform = LinearTrendTransform(in_column="target")

pipeline_sma = Pipeline(model=model_sma, horizon=HORIZON, transforms=[linear_trend_transform])
[29]:
metrics_sma, forecast_sma, fold_info_sma = pipeline_sma.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[30]:
metrics_sma
[30]:
segment SMAPE MAPE MAE fold_number
0 segment_a 6.343943 6.124296 33.196532 0
0 segment_a 5.346946 5.192455 27.938101 1
0 segment_a 7.510347 7.189999 40.028565 2
2 segment_b 7.178822 6.920176 17.818102 0
2 segment_b 5.672504 5.554555 13.719200 1
2 segment_b 3.327846 3.359712 7.680919 2
1 segment_c 6.430429 6.200580 10.877718 0
1 segment_c 5.947090 5.727531 10.701336 1
1 segment_c 6.186545 5.943679 11.359563 2
3 segment_d 4.707899 4.644170 39.918646 0
3 segment_d 5.403426 5.600978 43.047332 1
3 segment_d 2.505279 2.543719 19.347565 2
[31]:
score = metrics_sma["SMAPE"].mean()
print(f"Average SMAPE for Seasonal MA: {score:.3f}")
Average SMAPE for Seasonal MA: 5.547
[32]:
plot_backtest(forecast_sma, ts, history_len=20)
../_images/tutorials_NN_examples_58_0.png

As we can see, neural networks are a bit better in this particular case.

4. Etna native deep models

We’ve used models from pytorch-forecasting above. Now let’s talk about etna native implementations of deep models for time series.
There is small thing to change: we dont need special PytorchForecastingTransform now.

RNNModel

We’ll use RNN model based on LSTM cell

[33]:
from etna.models.nn import RNNModel
from etna.transforms import StandardScalerTransform
[34]:
model_rnn = RNNModel(
    decoder_length=HORIZON,
    encoder_length=2 * HORIZON,
    input_size=11,
    trainer_params=dict(max_epochs=5),
    lr=1e-3,
)

pipeline_rnn = Pipeline(
    model=model_rnn,
    horizon=HORIZON,
    transforms=[StandardScalerTransform(in_column="target"), transform_lag],
)
[35]:
metrics_rnn, forecast_rnn, fold_info_rnn = pipeline_rnn.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type    | Params
---------------------------------------
0 | loss       | MSELoss | 0
1 | rnn        | LSTM    | 4.0 K
2 | projection | Linear  | 17
---------------------------------------
4.0 K     Trainable params
0         Non-trainable params
4.0 K     Total params
0.016     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    5.7s
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type    | Params
---------------------------------------
0 | loss       | MSELoss | 0
1 | rnn        | LSTM    | 4.0 K
2 | projection | Linear  | 17
---------------------------------------
4.0 K     Trainable params
0         Non-trainable params
4.0 K     Total params
0.016     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:   11.3s
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type    | Params
---------------------------------------
0 | loss       | MSELoss | 0
1 | rnn        | LSTM    | 4.0 K
2 | projection | Linear  | 17
---------------------------------------
4.0 K     Trainable params
0         Non-trainable params
4.0 K     Total params
0.016     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:   17.2s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:   17.2s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[36]:
score = metrics_rnn["SMAPE"].mean()
print(f"Average SMAPE for LSTM: {score:.3f}")
Average SMAPE for LSTM: 5.643
[37]:
plot_backtest(forecast_rnn, ts, history_len=20)
../_images/tutorials_NN_examples_65_0.png

Deep State Model

Deep State Model works well with multiple similar time-series. It inffers shared patterns from them.

We have to determine the type of seasonality in data (based on data granularity), SeasonalitySSM class is responsible for this. In this example, we have daily data, so we use day-of-week (7 seasons) and day-of-month (31 seasons) models. We also set the trend component using the LevelTrendSSM class. Also in the model we use time-based features like day-of-week, day-of-month and time independent feature representing the segment of time series.

[38]:
from etna.models.nn import DeepStateModel
from etna.models.nn.deepstate import CompositeSSM, SeasonalitySSM, LevelTrendSSM
from etna.transforms import StandardScalerTransform, DateFlagsTransform, SegmentEncoderTransform
[39]:
HORIZON = 7
metrics = [SMAPE(), MAPE(), MAE()]
[40]:
transforms = [
    SegmentEncoderTransform(),
    StandardScalerTransform(in_column="target"),
    DateFlagsTransform(
        day_number_in_week=True,
        day_number_in_month=True,
        week_number_in_month=False,
        week_number_in_year=False,
        month_number_in_year=False,
        year_number=False,
        is_weekend=False,
        out_column="df",
    ),
]
[41]:
monthly_smm = SeasonalitySSM(num_seasons=31, timestamp_transform=lambda x: x.day - 1)
weekly_smm = SeasonalitySSM(num_seasons=7, timestamp_transform=lambda x: x.weekday())
[42]:
model_dsm = DeepStateModel(
    ssm=CompositeSSM(seasonal_ssms=[weekly_smm, monthly_smm], nonseasonal_ssm=LevelTrendSSM()),
    decoder_length=HORIZON,
    encoder_length=2 * HORIZON,
    input_size=3,
    trainer_params=dict(max_epochs=5),
    lr=1e-3,
)

pipeline_dsm = Pipeline(
    model=model_dsm,
    horizon=HORIZON,
    transforms=transforms,
)
[43]:
metrics_dsm, forecast_dsm, fold_info_dsm = pipeline_dsm.backtest(ts, metrics=metrics, n_folds=3, n_jobs=1)
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type       | Params
------------------------------------------
0 | RNN        | LSTM       | 7.2 K
1 | projectors | ModuleDict | 5.0 K
------------------------------------------
12.2 K    Trainable params
0         Non-trainable params
12.2 K    Total params
0.049     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:   17.8s
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type       | Params
------------------------------------------
0 | RNN        | LSTM       | 7.2 K
1 | projectors | ModuleDict | 5.0 K
------------------------------------------
12.2 K    Trainable params
0         Non-trainable params
12.2 K    Total params
0.049     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:   32.4s
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type       | Params
------------------------------------------
0 | RNN        | LSTM       | 7.2 K
1 | projectors | ModuleDict | 5.0 K
------------------------------------------
12.2 K    Trainable params
0         Non-trainable params
12.2 K    Total params
0.049     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:   47.3s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:   47.3s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    1.1s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    1.2s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    1.5s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    1.5s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[44]:
score = metrics_dsm["SMAPE"].mean()
print(f"Average SMAPE for DeepStateModel: {score:.3f}")
Average SMAPE for DeepStateModel: 5.523
[45]:
plot_backtest(forecast_dsm, ts, history_len=20)
../_images/tutorials_NN_examples_74_0.png

N-BEATS Model

This architecture is based on backward and forward residual links and a deep stack of fully connected layers.

There are two types of models in the library. The NBeatsGenericModel class implements a generic deep learning model, while the NBeatsInterpretableModel is augmented with certain inductive biases to be interpretable (trend and seasonality).

[46]:
from etna.models.nn import NBeatsGenericModel
from etna.models.nn import NBeatsInterpretableModel
[47]:
HORIZON = 7
metrics = [SMAPE(), MAPE(), MAE()]
[48]:
model_nbeats_generic = NBeatsGenericModel(
    input_size=2 * HORIZON,
    output_size=HORIZON,
    loss="smape",
    stacks=30,
    layers=4,
    layer_size=256,
    trainer_params=dict(max_epochs=1000),
    lr=1e-3,
)

pipeline_nbeats_generic = Pipeline(
    model=model_nbeats_generic,
    horizon=HORIZON,
    transforms=[],
)
[49]:
metrics_nbeats_generic, forecast_nbeats_generic, _ = pipeline_nbeats_generic.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 206 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
206 K     Trainable params
0         Non-trainable params
206 K     Total params
0.826     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=1000` reached.
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:  4.7min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 206 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
206 K     Trainable params
0         Non-trainable params
206 K     Total params
0.826     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=1000` reached.
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:  9.2min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 206 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
206 K     Trainable params
0         Non-trainable params
206 K     Total params
0.826     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=1000` reached.
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 13.8min
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 13.8min
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[50]:
score = metrics_nbeats_generic["SMAPE"].mean()
print(f"Average SMAPE for N-BEATS Generic: {score:.3f}")
Average SMAPE for N-BEATS Generic: 4.630
[51]:
plot_backtest(forecast_nbeats_generic, ts, history_len=20)
../_images/tutorials_NN_examples_81_0.png
[52]:
model_nbeats_interp = NBeatsInterpretableModel(
    input_size=4 * HORIZON,
    output_size=HORIZON,
    loss="smape",
    trend_layer_size=64,
    seasonality_layer_size=256,
    trainer_params=dict(max_epochs=2000),
    lr=1e-3,
)

pipeline_nbeats_interp = Pipeline(
    model=model_nbeats_interp,
    horizon=HORIZON,
    transforms=[],
)
[53]:
metrics_nbeats_interp, forecast_nbeats_interp, _ = pipeline_nbeats_interp.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 224 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
223 K     Trainable params
385       Non-trainable params
224 K     Total params
0.896     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=2000` reached.
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:  3.4min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 224 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
223 K     Trainable params
385       Non-trainable params
224 K     Total params
0.896     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=2000` reached.
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:  7.4min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name  | Type        | Params
--------------------------------------
0 | model | NBeats      | 224 K
1 | loss  | NBeatsSMAPE | 0
--------------------------------------
223 K     Trainable params
385       Non-trainable params
224 K     Total params
0.896     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=2000` reached.
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 11.0min
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 11.0min
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[54]:
score = metrics_nbeats_interp["SMAPE"].mean()
print(f"Average SMAPE for N-BEATS Interpretable: {score:.3f}")
Average SMAPE for N-BEATS Interpretable: 5.375
[55]:
plot_backtest(forecast_nbeats_interp, ts, history_len=20)
../_images/tutorials_NN_examples_85_0.png

PatchTS Model

Model with transformer encoder that uses patches of timeseries as input words and linear decoder.

[56]:
from etna.models.nn import PatchTSModel

model_patchts = PatchTSModel(
    decoder_length=HORIZON,
    encoder_length=2 * HORIZON,
    patch_len=1,
    trainer_params=dict(max_epochs=100),
    lr=1e-3,
)

pipeline_patchts = Pipeline(
    model=model_patchts, horizon=HORIZON, transforms=[StandardScalerTransform(in_column="target")]
)

metrics_patchts, forecast_patchts, fold_info_patchs = pipeline_patchts.backtest(
    ts, metrics=metrics, n_folds=3, n_jobs=1
)
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type       | Params
------------------------------------------
0 | loss       | MSELoss    | 0
1 | model      | Sequential | 397 K
2 | projection | Sequential | 1.8 K
------------------------------------------
399 K     Trainable params
0         Non-trainable params
399 K     Total params
1.598     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=100` reached.
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:  5.0min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type       | Params
------------------------------------------
0 | loss       | MSELoss    | 0
1 | model      | Sequential | 397 K
2 | projection | Sequential | 1.8 K
------------------------------------------
399 K     Trainable params
0         Non-trainable params
399 K     Total params
1.598     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=100` reached.
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed: 12.3min
GPU available: True (cuda), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

  | Name       | Type       | Params
------------------------------------------
0 | loss       | MSELoss    | 0
1 | model      | Sequential | 397 K
2 | projection | Sequential | 1.8 K
------------------------------------------
399 K     Trainable params
0         Non-trainable params
399 K     Total params
1.598     Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=100` reached.
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 20.1min
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed: 20.1min
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done   1 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done   2 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done   3 tasks      | elapsed:    0.1s
[57]:
score = metrics_patchts["SMAPE"].mean()
print(f"Average SMAPE for PatchTS: {score:.3f}")
Average SMAPE for PatchTS: 6.297
[58]:
plot_backtest(forecast_patchts, ts, history_len=20)
../_images/tutorials_NN_examples_89_0.png