fourier¶
Classes
|
Adds fourier features to the dataset. |
- class FourierTransform(period: float, order: Optional[int] = None, mods: Optional[Sequence[int]] = None, out_column: Optional[str] = None)[source]¶
Adds fourier features to the dataset.
Notes
To understand how transform works we recommend: Fourier series.
Parameter
period
is responsible for the seasonality we want to capture.Parameters
order
andmods
define which harmonics will be used.
Parameter
order
is a more user-friendly version ofmods
. For example,order=2
can be represented asmods=[1, 2, 3, 4]
ifperiod
> 4 and asmods=[1, 2, 3]
if 3 <=period
<= 4.Create instance of FourierTransform.
- Parameters
period (float) –
the period of the seasonality to capture in frequency units of time series;
period
should be >= 2order (Optional[int]) –
upper order of Fourier components to include;
order
should be >= 1 and <= ceil(period/2))mods (Optional[Sequence[int]]) –
alternative and precise way of defining which harmonics will be used, for example
mods=[1, 3, 4]
means that sin of the first order and sin and cos of the second order will be used;mods
should be >= 1 and < periodout_column (Optional[str]) –
if set, name of added column, the final name will be ‘{out_columnt}_{mod}’;
if don’t set, name will be
transform.__repr__()
, repr will be made for transform that creates exactly this column
- Raises
ValueError: – if period < 2
ValueError: – if both or none of order, mods is set
ValueError: – if order is < 1 or > ceil(period/2)
ValueError: – if at least one mod is < 1 or >= period
- fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.base.Transform ¶
Fit the transform.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to fit the transform on.
- Returns
The fitted transform instance.
- Return type
- fit_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Fit and transform TSDataset.
May be reimplemented. But it is not recommended.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to transform.
- Returns
Transformed TSDataset.
- Return type
- get_regressors_info() List[str] [source]¶
Return the list with regressors created by the transform.
- Return type
List[str]
- inverse_transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Inverse transform TSDataset.
Do nothing.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to be inverse transformed.
- Returns
TSDataset after applying inverse transformation.
- Return type
- classmethod load(path: pathlib.Path) typing_extensions.Self ¶
Load an object.
Warning
This method uses
dill
module which is not secure. It is possible to construct malicious data which will execute arbitrary code during loading. Never load data that could have come from an untrusted source, or that could have been tampered with.- Parameters
path (pathlib.Path) – Path to load object from.
- Returns
Loaded object.
- Return type
typing_extensions.Self
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
If
self.order
is set then this grid tunesorder
parameter: Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- save(path: pathlib.Path)¶
Save the object.
- Parameters
path (pathlib.Path) – Path to save object to.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- transform(ts: etna.datasets.tsdataset.TSDataset) etna.datasets.tsdataset.TSDataset ¶
Transform TSDataset inplace.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to transform.
- Returns
Transformed TSDataset.
- Return type