FoldMask¶
- class FoldMask(first_train_timestamp: Optional[Union[str, pandas._libs.tslibs.timestamps.Timestamp]], last_train_timestamp: Union[str, pandas._libs.tslibs.timestamps.Timestamp], target_timestamps: List[Union[str, pandas._libs.tslibs.timestamps.Timestamp]])[source]¶
Bases:
etna.core.mixins.BaseMixin
Container to hold the description of the fold mask.
Fold masks are expected to be used for backtest strategy customization.
Init FoldMask.
- Parameters
first_train_timestamp (Optional[Union[str, pandas._libs.tslibs.timestamps.Timestamp]]) – First train timestamp, the first timestamp in the dataset if None is passed
last_train_timestamp (Union[str, pandas._libs.tslibs.timestamps.Timestamp]) – Last train timestamp
target_timestamps (List[Union[str, pandas._libs.tslibs.timestamps.Timestamp]]) – List of target timestamps
- Inherited-members
Methods
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
validate_on_dataset
(ts, horizon)Validate fold mask on the dataset with specified horizon.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- validate_on_dataset(ts: etna.datasets.tsdataset.TSDataset, horizon: int)[source]¶
Validate fold mask on the dataset with specified horizon.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to validate on
horizon (int) – Forecasting horizon