_AutoARIMAAdapter¶
- class _AutoARIMAAdapter(d: Optional[int] = None, D: Optional[int] = None, max_p: int = 5, max_q: int = 5, max_P: int = 2, max_Q: int = 2, max_order: int = 5, max_d: int = 2, max_D: int = 1, start_p: int = 2, start_q: int = 2, start_P: int = 1, start_Q: int = 1, season_length: int = 1, **kwargs)[source]¶
Bases:
etna.models.statsforecast._StatsForecastBaseAdapter
Adapter for
statsforecast.models.AutoARIMA
.Init model with given params.
- Parameters
d (Optional[int]) – Order of first-differencing.
D (Optional[int]) – Order of seasonal-differencing.
max_p (int) – Max autorregresives p.
max_q (int) – Max moving averages q.
max_P (int) – Max seasonal autorregresives P.
max_Q (int) – Max seasonal moving averages Q.
max_order (int) – Max p+q+P+Q value if not stepwise selection.
max_d (int) – Max non-seasonal differences.
max_D (int) – Max seasonal differences.
start_p (int) – Starting value of p in stepwise procedure.
start_q (int) – Starting value of q in stepwise procedure.
start_P (int) – Starting value of P in stepwise procedure.
start_Q (int) – Starting value of Q in stepwise procedure.
season_length (int) – Number of observations per unit of time. Ex: 24 Hourly data.
**kwargs – Additional parameters for
statsforecast.models.AutoARIMA
.
- Inherited-members
Methods
fit
(df, regressors)Fit statsforecast adapter.
forecast
(df[, prediction_interval, quantiles])Compute predictions on future data from a statsforecast model.
Estimate forecast components.
Get statsforecast model that is used inside etna class.
predict
(df[, prediction_interval, quantiles])Compute in-sample predictions from a statsforecast model.
Estimate prediction components.
- fit(df: pandas.core.frame.DataFrame, regressors: List[str]) etna.models.statsforecast._StatsForecastBaseAdapter ¶
Fit statsforecast adapter.
- Parameters
df (pandas.core.frame.DataFrame) – Features dataframe
regressors (List[str]) – List of the columns with regressors
- Returns
Fitted adapter
- Return type
- forecast(df: pandas.core.frame.DataFrame, prediction_interval: bool = False, quantiles: Sequence[float] = ()) pandas.core.frame.DataFrame ¶
Compute predictions on future data from a statsforecast model.
This method only works on data that goes right after the train.
- Parameters
df (pandas.core.frame.DataFrame) – Features dataframe
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution
- Returns
DataFrame with predictions
- Return type
pandas.core.frame.DataFrame
- forecast_components(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame ¶
Estimate forecast components.
- Parameters
df (pandas.core.frame.DataFrame) – features dataframe
- Returns
dataframe with forecast components
- Return type
pandas.core.frame.DataFrame
- get_model() Union[statsforecast.models.AutoCES, statsforecast.models.AutoARIMA, statsforecast.models.AutoTheta, statsforecast.models.AutoETS, etna.libs.statsforecast.arima.ARIMA] ¶
Get statsforecast model that is used inside etna class.
- Returns
Internal model
- Return type
Union[statsforecast.models.AutoCES, statsforecast.models.AutoARIMA, statsforecast.models.AutoTheta, statsforecast.models.AutoETS, etna.libs.statsforecast.arima.ARIMA]
- predict(df: pandas.core.frame.DataFrame, prediction_interval: bool = False, quantiles: Sequence[float] = ()) pandas.core.frame.DataFrame ¶
Compute in-sample predictions from a statsforecast model.
This method only works on train data.
- Parameters
df (pandas.core.frame.DataFrame) – Features dataframe
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution
- Returns
DataFrame with predictions
- Return type
pandas.core.frame.DataFrame
- predict_components(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame ¶
Estimate prediction components.
- Parameters
df (pandas.core.frame.DataFrame) – features dataframe
- Returns
dataframe with prediction components
- Return type
pandas.core.frame.DataFrame