SSM¶
- class SSM[source]¶
Bases:
abc.ABC
,etna.core.mixins.BaseMixin
Base class for State Space Model.
The system dynamics is described with the following equations:
\[y_t = a^T_t l_{t-1} + b_t + \sigma_t\varepsilon_t\]\[l_t = F_t l_{t-1} + g_t\epsilon_t\]\[l_0 \sim N(\mu_0, diag(\sigma_0^2)), \varepsilon_t \sim N(0, 1), \epsilon_t \sim N(0, 1),\]where
\(y\) - state of the system
\(l\) - state of the system in the latent space
\(a\) - emission coefficient
\(F\) - transition coefficient
\(g\) - innovation coefficient
\(\sigma\) - noise standard deviation
\(\mu_0\) - prior mean
\(\sigma_0\) - prior standard deviation
- Inherited-members
Methods
emission_coeff
(datetime_index)Emission coefficient matrix.
generate_datetime_index
(timestamps)Generate datetime index to use in the State Space Model.
innovation_coeff
(datetime_index)Innovation coefficient matrix.
Dimension of the latent space.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transition_coeff
(datetime_index)Transition coefficient matrix.
- abstract emission_coeff(datetime_index: torch.Tensor) torch.Tensor [source]¶
Emission coefficient matrix.
- Parameters
datetime_index (torch.Tensor) – Tensor with the index values. Values should be from 0 to seasonal period.
- Returns
Emission coefficient matrix.
- Return type
- abstract generate_datetime_index(timestamps: numpy.ndarray) numpy.ndarray [source]¶
Generate datetime index to use in the State Space Model.
- Parameters
timestamps (numpy.ndarray) – Array with timestamps.
- Returns
Datetime index for State Space Model.
- Return type
numpy.ndarray
- abstract innovation_coeff(datetime_index: torch.Tensor) torch.Tensor [source]¶
Innovation coefficient matrix.
- Parameters
datetime_index (torch.Tensor) – Tensor with the index values. Values should be from 0 to seasonal period.
- Returns
Innovation coefficient matrix.
- Return type
- abstract latent_dim() int [source]¶
Dimension of the latent space.
- Returns
Dimension of the latent space.
- Return type
int
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- abstract transition_coeff(datetime_index: torch.Tensor) torch.Tensor [source]¶
Transition coefficient matrix.
- Parameters
datetime_index (torch.Tensor) – Tensor with the index values. Values should be from 0 to seasonal period.
- Returns
Transition coefficient matrix.
- Return type