RMSE¶
- class RMSE(mode: str = MetricAggregationMode.per_segment, **kwargs)[source]¶
Bases:
etna.metrics.base.Metric
Root mean squared error metric with multi-segment computation support.
\[RMSE(y\_true, y\_pred) = \sqrt\frac{\sum_{i=0}^{n-1}{(y\_true_i - y\_pred_i)^2}}{n}\]Notes
You can read more about logic of multi-segment metrics in Metric docs.
Init metric.
- Parameters
mode ('macro' or 'per-segment') – metrics aggregation mode
kwargs – metric’s computation arguments
- Inherited-members
Methods
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
Whether higher metric value is better.
Name of the metric for representation.
- set_params(**params: dict) etna.core.mixins.TMixin ¶
Return new object instance with modified parameters.
Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a
model
in aPipeline
.Nested parameters are expected to be in a
<component_1>.<...>.<parameter>
form, where components are separated by a dot.- Parameters
**params – Estimator parameters
self (etna.core.mixins.TMixin) –
params (dict) –
- Returns
New instance with changed parameters
- Return type
etna.core.mixins.TMixin
Examples
>>> from etna.pipeline import Pipeline >>> from etna.models import NaiveModel >>> from etna.transforms import AddConstTransform >>> model = model=NaiveModel(lag=1) >>> transforms = [AddConstTransform(in_column="target", value=1)] >>> pipeline = Pipeline(model, transforms=transforms, horizon=3) >>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2}) Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
- to_dict()¶
Collect all information about etna object in dict.
- property greater_is_better: bool¶
Whether higher metric value is better.
- property name: str¶
Name of the metric for representation.