functional_metrics¶
Functions
|
Mean absolute percentage error. |
|
Max Deviation metric. |
|
Sign error metric. |
|
Symmetric mean absolute percentage error. |
|
Weighted average percentage Error metric. |
- mape(y_true: List[Union[float, List[float]]], y_pred: List[Union[float, List[float]]], eps: float = 1e-15) float [source]¶
Mean absolute percentage error.
Wikipedia entry on the Mean absolute percentage error
- Parameters
y_true (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
eps (float=1e-15) – MAPE is undefined for
y_true[i]==0
for anyi
, so all zerosy_true[i]
are clipped tomax(eps, abs(y_true))
.
- Returns
A non-negative floating point value (the best value is 0.0).
- Return type
float
- max_deviation(y_true: List[Union[float, List[float]]], y_pred: List[Union[float, List[float]]]) float [source]¶
Max Deviation metric.
- Parameters
y_true (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
- Returns
A floating point value (the best value is 0.0).
- Return type
float
- sign(y_true: List[Union[float, List[float]]], y_pred: List[Union[float, List[float]]]) float [source]¶
Sign error metric.
\[Sign(y\_true, y\_pred) = \frac{1}{n}\cdot\sum_{i=0}^{n - 1}{sign(y\_true_i - y\_pred_i)}\]- Parameters
y_true (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
- Returns
A floating point value (the best value is 0.0).
- Return type
float
- smape(y_true: List[Union[float, List[float]]], y_pred: List[Union[float, List[float]]], eps: float = 1e-15) float [source]¶
Symmetric mean absolute percentage error.
Wikipedia entry on the Symmetric mean absolute percentage error
\[SMAPE = \dfrac{100}{n}\sum_{t=1}^{n}\dfrac{|ytrue_{t}-ypred_{t}|}{(|ypred_{t}|+|ytrue_{t}|) / 2}\]- Parameters
y_true (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
eps (float=1e-15) – SMAPE is undefined for
y_true[i] + y_pred[i] == 0
for anyi
, so all zerosy_true[i] + y_pred[i]
are clipped tomax(eps, abs(y_true) + abs(y_pred))
.
- Returns
A non-negative floating point value (the best value is 0.0).
- Return type
float
- wape(y_true: List[Union[float, List[float]]], y_pred: List[Union[float, List[float]]]) float [source]¶
Weighted average percentage Error metric.
\[WAPE(y\_true, y\_pred) = \frac{\sum_{i=0}^{n} |y\_true_i - y\_pred_i|}{\sum_{i=0}^{n}|y\_true_i|}\]- Parameters
y_true (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred (List[Union[float, List[float]]]) –
array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
- Returns
A floating point value (the best value is 0.0).
- Return type
float