console_logger

Classes

ConsoleLogger([table])

Log any events and metrics to stderr output.

class ConsoleLogger(table: bool = True)[source]

Log any events and metrics to stderr output. Uses loguru.

Create instance of ConsoleLogger.

Parameters

table (bool) – Indicator for writing tables to the console

finish_experiment(*args, **kwargs)

Finish experiment.

log(msg: Union[str, Dict[str, Any]], **kwargs)[source]

Log any event.

e.g. “Fitted segment segment_name” to stderr output.

Parameters
  • msg (Union[str, Dict[str, Any]]) – Message or dict to log

  • kwargs – Parameters for changing additional info in log message

log_backtest_metrics(ts: TSDataset, metrics_df: pandas.core.frame.DataFrame, forecast_df: pandas.core.frame.DataFrame, fold_info_df: pandas.core.frame.DataFrame)[source]

Write metrics to logger.

Parameters
  • ts (TSDataset) – TSDataset to with backtest data

  • metrics_df (pandas.core.frame.DataFrame) – Dataframe produced with etna.pipeline.Pipeline._get_backtest_metrics()

  • forecast_df (pandas.core.frame.DataFrame) – Forecast from backtest

  • fold_info_df (pandas.core.frame.DataFrame) – Fold information from backtest

Notes

The result of logging will be different for aggregate_metrics=True and aggregate_metrics=False options in backtest().

log_backtest_run(metrics: pandas.core.frame.DataFrame, forecast: pandas.core.frame.DataFrame, test: pandas.core.frame.DataFrame)

Backtest metrics from one fold to logger.

Parameters
  • metrics (pandas.core.frame.DataFrame) – Dataframe with metrics from backtest fold

  • forecast (pandas.core.frame.DataFrame) – Dataframe with forecast

  • test (pandas.core.frame.DataFrame) – Dataframe with ground truth

set_params(**params: dict) etna.core.mixins.TMixin

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters
  • **params – Estimator parameters

  • self (etna.core.mixins.TMixin) –

  • params (dict) –

Returns

New instance with changed parameters

Return type

etna.core.mixins.TMixin

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
start_experiment(*args, **kwargs)

Start experiment.

Complete logger initialization or reinitialize it before the next experiment with the same name.

to_dict()

Collect all information about etna object in dict.

property pl_logger

Pytorch lightning loggers.