euclidean_distance

Classes

EuclideanDistance([trim_series])

Euclidean distance handler.

class EuclideanDistance(trim_series: bool = True)[source]

Euclidean distance handler.

Init EuclideanDistance.

Parameters

trim_series (bool) – if True, compare parts of series with common timestamp

get_average(ts: TSDataset, **kwargs: Dict[str, Any]) pandas.core.frame.DataFrame

Get series that minimizes squared distance to given ones according to the Distance.

Parameters
  • ts (TSDataset) – TSDataset with series to be averaged

  • kwargs (Dict[str, Any]) – additional parameters for averaging

Returns

dataframe with columns “timestamp” and “target” that contains the series

Return type

pd.DataFrame

set_params(**params: dict) etna.core.mixins.TMixin

Return new object instance with modified parameters.

Method also allows to change parameters of nested objects within the current object. For example, it is possible to change parameters of a model in a Pipeline.

Nested parameters are expected to be in a <component_1>.<...>.<parameter> form, where components are separated by a dot.

Parameters
  • **params – Estimator parameters

  • self (etna.core.mixins.TMixin) –

  • params (dict) –

Returns

New instance with changed parameters

Return type

etna.core.mixins.TMixin

Examples

>>> from etna.pipeline import Pipeline
>>> from etna.models import NaiveModel
>>> from etna.transforms import AddConstTransform
>>> model = model=NaiveModel(lag=1)
>>> transforms = [AddConstTransform(in_column="target", value=1)]
>>> pipeline = Pipeline(model, transforms=transforms, horizon=3)
>>> pipeline.set_params(**{"model.lag": 3, "transforms.0.value": 2})
Pipeline(model = NaiveModel(lag = 3, ), transforms = [AddConstTransform(in_column = 'target', value = 2, inplace = True, out_column = None, )], horizon = 3, )
to_dict()

Collect all information about etna object in dict.