relevance_table¶
Functions
|
Drop nan values from dataframes for the segment. |
|
Calculate relevance table with feature importance from model. |
|
Calculate relevance table with p-values from tsfresh. |
- get_model_relevance_table(df: pandas.core.frame.DataFrame, df_exog: pandas.core.frame.DataFrame, model: Union[sklearn.tree._classes.DecisionTreeRegressor, sklearn.tree._classes.ExtraTreeRegressor, sklearn.ensemble._forest.RandomForestRegressor, sklearn.ensemble._forest.ExtraTreesRegressor, sklearn.ensemble._gb.GradientBoostingRegressor, catboost.core.CatBoostRegressor]) pandas.core.frame.DataFrame [source]¶
Calculate relevance table with feature importance from model.
- Parameters
df (pandas.core.frame.DataFrame) – dataframe with timeseries
df_exog (pandas.core.frame.DataFrame) – dataframe with exogenous data
model (Union[sklearn.tree._classes.DecisionTreeRegressor, sklearn.tree._classes.ExtraTreeRegressor, sklearn.ensemble._forest.RandomForestRegressor, sklearn.ensemble._forest.ExtraTreesRegressor, sklearn.ensemble._gb.GradientBoostingRegressor, catboost.core.CatBoostRegressor]) – model to obtain feature importance, should have
feature_importances_
property
- Returns
dataframe with feature importance values.
- Return type
pd.DataFrame
- get_statistics_relevance_table(df: pandas.core.frame.DataFrame, df_exog: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame [source]¶
Calculate relevance table with p-values from tsfresh.
- Parameters
df (pandas.core.frame.DataFrame) – dataframe with timeseries
df_exog (pandas.core.frame.DataFrame) – dataframe with exogenous data
- Returns
dataframe with p-values.
- Return type
pd.DataFrame
Notes
Time complexity of this method is \(O(n\_segments * n\_features * history\_len)\)