Source code for etna.transforms.timestamp.holiday

import datetime
from enum import Enum
from typing import List
from typing import Optional

import holidays
import numpy as np
import pandas as pd

from etna.transforms.base import FutureMixin
from etna.transforms.base import IrreversibleTransform


[docs]class HolidayTransformMode(str, Enum): """Enum for different imputation strategy.""" binary = "binary" category = "category" @classmethod def _missing_(cls, value): raise NotImplementedError( f"{value} is not a valid {cls.__name__}. Supported mode: {', '.join([repr(m.value) for m in cls])}" )
[docs]class HolidayTransform(IrreversibleTransform, FutureMixin): """ HolidayTransform generates series that indicates holidays in given dataset. In ``binary`` mode shows the presence of holiday in that day. In ``category`` mode shows the name of the holiday with value "NO_HOLIDAY" reserved for days without holidays. """ _no_holiday_name: str = "NO_HOLIDAY" def __init__(self, iso_code: str = "RUS", mode: str = "binary", out_column: Optional[str] = None): """ Create instance of HolidayTransform. Parameters ---------- iso_code: internationally recognised codes, designated to country for which we want to find the holidays mode: `binary` to indicate holidays, `category` to specify which holiday do we have at each day out_column: name of added column. Use ``self.__repr__()`` if not given. """ super().__init__(required_features=["target"]) self.iso_code = iso_code self.mode = mode self._mode = HolidayTransformMode(mode) self.holidays = holidays.country_holidays(iso_code) self.out_column = out_column def _get_column_name(self) -> str: if self.out_column: return self.out_column else: return self.__repr__() def _fit(self, df: pd.DataFrame) -> "HolidayTransform": """ Fit HolidayTransform with data from df. Does nothing in this case. Parameters ---------- df: pd.DataFrame value series with index column in timestamp format """ return self def _transform(self, df: pd.DataFrame) -> pd.DataFrame: """ Transform data from df with HolidayTransform and generate a column of holidays flags or its titles. Parameters ---------- df: pd.DataFrame value series with index column in timestamp format Returns ------- : pd.DataFrame with added holidays """ if (df.index[1] - df.index[0]) > datetime.timedelta(days=1): raise ValueError("Frequency of data should be no more than daily.") cols = df.columns.get_level_values("segment").unique() out_column = self._get_column_name() if self._mode is HolidayTransformMode.category: encoded_matrix = np.array( [self.holidays[x] if x in self.holidays else self._no_holiday_name for x in df.index] ) else: encoded_matrix = np.array([int(x in self.holidays) for x in df.index]) encoded_matrix = encoded_matrix.reshape(-1, 1).repeat(len(cols), axis=1) encoded_df = pd.DataFrame( encoded_matrix, columns=pd.MultiIndex.from_product([cols, [out_column]], names=("segment", "feature")), index=df.index, ) encoded_df = encoded_df.astype("category") df = df.join(encoded_df) df = df.sort_index(axis=1) return df
[docs] def get_regressors_info(self) -> List[str]: """Return the list with regressors created by the transform. Returns ------- : List with regressors created by the transform. """ return [self._get_column_name()]